Chronic Toxicity Testing of the Chevron/Cawelo Water District "Inlet to Reservoir B" C18 Eluate: Assessment of GAC Treatment and Chemical Analyses of the C18 Eluate

Sample collected January 11, 2010

Prepared For:

Chevron Energy Technology Co. 3901 Briarpark Houston, TX 77042

Prepared By:

Pacific EcoRisk 2250 Cordelia Road Fairfield, CA 94534

December 2010

Chronic Toxicity Testing of the Chevron/Cawelo Water District "Inlet to Reservoir B" C18 Eluate: Assessment of GAC Treatment and Chemical Analyses of the C18 Eluate

Effluent Sample Collected January 11, 2010

Table of Contents

	Page
1. INTRODUCTION	1
2. TOXICITY TEST PROCEDURES	2
2.1 C18 Solid Phase Extraction (SPE) Treatment and Column Elution	
2.2 Preparation of GAC-Treated Eluate	3
2.3 Survival and Growth Toxicity Testing with Larval Fathead Minnows	3
2.3.1 Reference Toxicant Testing of the Larval Fathead Minnows	4
3. TOXICITY TESTING RESULTS	5
3.1 Effects of 'Inlet to Reservoir B' Eluate on Fathead Minnows	5
3.2 Reference Toxicant Toxicity to Fathead Minnows	6
4. CHEMICAL ANALYSES OF THE TOXIC C18 ELUATE	7 [·]
5. SUMMARY AND CONCLUSIONS	9
5.1 QA/QC Summary	10
	•
Appendices	

- Appendix A Chain-of-Custody Record for the Collection and Delivery of the Chevron/Cawelo "Inlet to Reservoir B" Effluent Sample
- Appendix B Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of "Inlet to Reservoir B" Effluent to Fathead Minnows
- Appendix C Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Fathead Minnows
- Appendix D Laboratory Report for Chemical Analyses of Effluent C18 Elutriate

1. INTRODUCTION

Chevron USA Inc. has contracted Pacific EcoRisk (PER) to perform an evaluation of the chronic toxicity of Chevron/Cawelo Water District (Chevron/Cawelo) "Inlet to Reservoir B" effluent. Previous testing of this effluent has indicated the presence of toxicity to the test species used. Follow-up Toxicity Identification & Evaluations (TIEs) have further indicated that naphthenic acids were a likely cause of the toxicity in these effluents.

Previous chronic toxicity testing of an "Inlet to Reservoir B effluent" sample collected January 11, 2010, indicated significant reductions in fathead minnow survival and growth:

Effects of "Inlet to Reservoir B" Effluent on Fathead Minnows – Initial Testing There were significant reductions in survival at the $\geq 50\%$ 'Inlet to Reservoir B' effluent concentrations and further significant reductions in growth at the 25% effluent concentration.

In an attempt to better identify the likely cause(s) of this observed toxicity, a "targeted" Phase I Toxicity Identification Evaluation (TIE) was performed. Based upon previous observation of significant toxicity to fathead minnows being removed by the C18 treatment of the 9/21/09 effluent sample, the Phase I TIE of the 1/11/10 effluent sample was "targeted" towards the C18 treatment, and included Graduated pH (pH6, pH7, and pH8) treatments to evaluate possible pH lability of any organic toxicants. Also, as the fathead minnow growth response in the previous TIE did not provide any additional interpretive value, the TIE of the 1/11/10 effluent sample was limited to evaluation of the survival response.

Results of the Phase I TIE of the "Inlet to Reservoir B" Effluent

As in the initial test of the 1/11/10 effluent sample, there were significant reductions in survival in the untreated (Baseline) effluent, confirming that this toxicity was persistent and present at the time of the TIE.

Key TIE Observations:

- There was pH-labile toxicity, with toxicity increasing as pH decreased to pH6, and toxicity decreasing as pH increased to pH8. This is suggestive of a weakly acidic toxicant that becomes less polar as the pH decreases and more polar as the pH increases. This type of pattern would be consistent with naphthenic acids as a cause of toxicity;
- There was significant removal of survival toxicity by the filtration treatment, which suggests that some fraction of the toxicants present were associated with particulates;
- There was complete removal of any residual toxicity (i.e., toxicity remaining after the filtration treatment) by the C18 treatment, indicating that non-polar organics were a cause of the observed toxicity. Note these C18 columns were then frozen for potential further study.

As previously stated, TIE testing of the 9/21/09 effluent sample had similarly indicated toxicity removal by C18 treatment. Those C18 columns were subsequently sequentially eluted and toxicity was recovered in the 80%, 85%, and 90% methanol eluate fractions. These methanol eluate fractions (and their corresponding blanks) were shipped to Dr. Cliff Lange at Auburn University for chemical analysis targeted to chemicals that are typical constituents of petroleum refinery operations (e.g., volatile organic compounds, naphthenic acids, naphthalenes, phenolics, alkanes, and amines). Most important was the observation of measured concentrations of naphthenic acids in the toxic C18 eluate fractions at concentrations that might be expected to cause toxicity to these aquatic organisms. It is important to note that naphthenic acids also matched up with the TIE profiles, in particular the pH lability in conjunction with toxicity removal by C18.

TIE testing previously performed by PER for other refinery-related effluents has similarly indicated naphthenic acids as commonly-observed causes of refinery effluent toxicity, and follow-up Toxicity Reduction Evaluation (TRE) testing indicated that treatment of the toxic effluents with granulated activated carbon (GAC) was successful in removing the observed toxicity. With that in mind, testing of (untreated) effluent side-by-side with GAC-treated effluent was performed on an "Inlet to Reservoir B" effluent sample collected 9/3/10 to assess the efficacy of GAC treatment in the removal of toxicity from the effluent. The results of that initial assessment of GAC efficacy in toxicity removal from the Inlet to Reservoir B effluent follow:

Efficacy of GAC Treatment in Removing Toxicity from the Inlet to Reservoir B Effluent

There were significant reductions in survival at the $\geq 25\%$ effluent concentrations; and further significant reductions in growth at the 12.5% effluent concentration; after GAC treatment, there were <u>no</u> significant reductions in survival or growth. *Conclusion:* The GAC treatment effectively removed the toxicity from the effluent.

CURRENT TESTING

On that basis, the frozen C18 columns from the earlier TIE of the 1/11/10 effluent sample were thawed out and eluted with methanol, with the eluate being tested for toxicity to fathead minnows as well as efficacy of GAC treatment in removing any toxicity that might be observed. The current chronic toxicity evaluation consisted of performing the US EPA 7-day survival & growth test with larval fathead minnows (*Pimephales promelas*). This report describes the performance and results of this testing.

2. TOXICITY TEST PROCEDURES

The methods used in conducting this chronic toxicity testing followed EPA testing manual "Short-Term Methods for Estimating the Chronic Effects of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition" (EPA-821-R-02-013).

2.1 C18 Solid Phase Extraction (SPE) Treatment and Column Elution

The C18 TIE treatment test is used to identify effluent toxicity that is due to compounds that are removed or sorbed onto chromatographic resin (i.e., C18 columns) specific for non-polar organic compounds. At the time of the initial TIE of the 1/11/10 effluent sample, 1.0-L aliquots of effluent were passed over each of multiple 1 gm C18 columns. The C18-treated effluent went on to be tested, and the C18 columns were frozen for potential follow-up Phase II TIE work.

For the current testing, frozen C18 columns were removed from the freezer and thawed out to room temperature. The C18 columns were then eluted and the eluate was tested for recovery of toxicity.

The C18 columns were eluted with 100% methanol and the eluate was collected and diluted back up to the 1X effluent concentration for toxicity testing. Method blank columns were similarly eluted. Fathead minnows were tested at the 100% (= 1X) effluent concentration. Additional aliquots of the diluted 1X eluate were set aside and were shipped on ice to Dr. Cliff Lange at Auburn University for chemical analysis.

2.2 Preparation of GAC-Treated Eluate

To prepare the GAC-treated effluents, separatory funnels were loaded with rinsed GAC. Using a peristaltic pump, effluent was pumped up into the bottom of the funnel and passed through the entire column of GAC at a rate of 12 mL/L before flowing out the top (the overall loading rate was 1-L of GAC per treatment of 6-L of 1X eluate). A 'GAC-Treatment Blank' was prepared in a similar fashion using C18 eluate blank medium. The GAC-treated eluate (and method blank) was tested identically to the untreated eluate, as described below.

2.3 Survival and Growth Toxicity Testing with Larval Fathead Minnows

The chronic fathead minnow test consists of exposing larval fish to effluent for 7 days, after which effects on survival and growth are evaluated. The specific procedures used in this testing are described below.

The Lab Water Control for this test consisted of USEPA synthetic moderately-hard water (prepared by addition of ACS-reagent grade chemicals to Type 1 lab water [reverse-osmosis, deionized water]). The effluent C18 eluate (and eluate blank) was tested at the 100% concentration only; the GAC-treated effluent eluate (and accompanying blank) was similarly tested at the 100% concentration only. Fresh test solutions were prepared daily. "New" water quality characteristics (pH, D.O., and conductivity) were measured on these test solutions prior to use in the tests.

There were 2 replicates at each test treatment, each replicate consisting of 200 mL of test media in a 400-mL glass beaker. These tests were initiated by randomly allocating 10 larval fathead minnows (<48 hrs old) into each replicate. The replicate beakers were placed in a temperature-controlled room at 25°C, under cool-white fluorescent lighting on a 16L:8D photoperiod. The test fish were fed brine shrimp nauplii twice daily.

Each replicate was examined daily, with any dead animals, uneaten food, wastes, and other detritus being removed. The number of live fish in each replicate was determined and then approximately 80% of the test media in each beaker was carefully poured out and replaced with fresh test solution. "Old" water quality characteristics (pH, D.O., and conductivity) were measured on the old test water that had been discarded from one randomly-selected replicate at each treatment.

After 7 days exposure, the number of live fish in each replicate beaker was recorded. The fish from each replicate were then carefully euthanized in methanol, rinsed in de-ionized water, and transferred to a pre-dried and pre-tared weighing pan. These fish were then dried at 100°C for >24 hrs and re-weighed to determine the total weight of fish in each replicate; the total weight was then divided by the initial number of fish per replicate (n=10) to determine the "biomass value". The resulting survival and growth ("biomass value") data were analyzed to evaluate any impairment(s) caused by the effluents and GAC-treated effluents; all statistical analyses were performed using the CETIS® statistical software.

2.3.1 Reference Toxicant Testing of the Larval Fathead Minnows

In order to assess the sensitivity of the fish to toxic stress, a concurrent reference toxicant test was performed. The reference toxicant test was performed similarly to the effluent test, except that test solutions consisted of Lab Water Control media spiked with NaCl at test concentrations of 0.75, 1.5, 3, 6, and 9 gm/L. The resulting test response data were analyzed to determine key dose-response point estimates (e.g., EC50); all statistical analyses were made using the CETIS® software. These response endpoints were then compared to the "typical response" ranges established by the mean ± 2 SD of the point estimates generated by the most recent previous reference toxicant tests performed by this lab.

3. TOXICITY TESTING RESULTS

3.1 Effects of 'Inlet to Reservoir B' Eluate on Fathead Minnows

The results of this test are summarized below in Table 2. There was 100% survival and a mean 'biomass value' of 0.34 mg at the Lab Water Control treatment. There were significant reductions in survival in the untreated 100% eluate, indicating that the toxicity that had been observed in the initial testing and previous Phase I TIE of this effluent was still present at the time of the current testing.

After GAC treatment, there were <u>no</u> significant reductions in survival or growth in the C18 eluate. *Conclusion:* The GAC treatment effectively removed the toxicity from the effluent C18 eluate.

The test data and the summary of statistical analyses for this test are presented in Appendix B.

Table 2. Effects of 'Inlet to Reservoir B' eff	fluent C18 eluate on fa	athead minnows.		
Effluent C18 Eluate Treatment	% Survival	Mean Fish Biomass Value (mg)		
Lab Water Control	100	0.34		
Eluate Blank	100	0.32		
100% Eluate	5*	0.01*		
GAC-Treated Eluate Blank	95	0.30		
GAC-Treated 100% Eluate	95	0.27		

^{* -} The response at this test treatment was significantly less than the Lab Control treatment response.

3.2 Reference Toxicant Toxicity to Fathead Minnows

The results of this test are summarized below in Table 3. There was 80% survival and a mean biomass value of 0.30 mg at the Lab Control treatment. The survival EC50 was 3.7 gm/L NaCl and the growth IC50 was 2.9 gm/L NaCl.

These reference toxicant test results are consistent with the "typical response" ranges established by previous fathead minnow reference toxicant tests performed in this laboratory, indicating that these organisms were responding to toxic stress in a typical fashion.

The test data and summary of statistical analyses for this test are presented in Appendix C.

Table 3. Reference toxicant testing: ef	fects of NaCl on fathea	d minnows.
NaCl Treatment (gm/L)	% Survival	Mean Fish Biomass Value (mg)
Lab Control	80	0.30
0.75	82.5	0.31
. 1.5	90	0.30
3	52.5*	0.14*
6	15*	0.05*
9	0*	0*
Summary of	Statistics	
Survival EC50 or Growth IC50 =	3.7 gm/L NaCl	2.9 gm/L NaCl

^{* -} The response at this test treatment was significantly less than the Lab Control treatment response at p < 0.05.

4. CHEMICAL ANALYSES OF THE TOXIC C18 ELUATE

The effluent eluate and eluate blank were shipped to Dr. Cliff Lange at Auburn University for chemical analysis targeted to chemicals that are typical constituents of petroleum refinery operations (e.g., volatile organic compounds, naphthenic acids, naphthalenes, phenolics, alkanes, and amines). The results of these analyses are summarized in Table 4, below.

Of particular interest are the reported concentrations of **naphthenic acids**. Naphthenic acids are naturally occurring linear and cyclic carboxylic compounds associated with the acidic fraction of petroleum, and are recognized as common causes of aquatic toxicity in petroleum refinery effluents. The cumulative measured concentration of the naphthenic acids included in the analyses of in the C18 eluate was ~5.0 mg/L, which is near the LC50 range reported for aquatic organisms. However, it is important to note that the current analysis was limited to 6 representative compounds, whereas there are over 100 naphthenic acid compounds, suggesting that the concentration of total naphthenic acids in the C18 eluate was much greater than 5.0 mg/L.

Furthermore, it must be noted that in the Phase II TIE C18 elution, methanol is used as the solvent due to the fact the when the eluate is reconstituted to the 1X concentration with Control water, the residual amount of methanol present is below toxicity thresholds. Stronger solvents such as methylene chloride, hexane, etc., would almost certainly have resulted in greater desorption of naphthenic acids from the C18 columns than did methanol, which would have resulted in even higher reported concentrations.

Table 4. Results of targeted chemical analyse	es of the toxicity C18 column	eluates (units = mg/L).		
NAPHTHALENES	Effluent C18 Eluate	Eluate Blank		
1-methyl-naphthalene	0.11	0.00		
2-methyl-naphthalene	0.13	0.00		
1,5-dimethyl-naphthalene	0.11	0.00		
1,7-dimethyl-naphthalene	0.03	0.00		
naphthalene	0.21	0.01		
Total Naphthalenes =	0.59	0.01		
NAPHTHENIC ACIDS				
cyclohexanecarboxylic acid	0.97	0.04		
methyl,pentyl cyclohexanecarboxylic acid	0.61	0.06		
methyl,pentyl cyclopentanecarboxylic acid	0.80	0.03		
heptylcyclohexanecarboxylic acid	0.75	0.09		
cyclopentanecarboxylic acid	1.13	0.05		
diethylcyclopentanecarboxylic acid	0.76	0.04		
Total Naphthenic Acids =	5.02	0.31		
VOAs				
1,2,4-trimethylbenzene	0.13	0.01		
1-ethyl-2-methyl benzene	0.11	0.03		
1,3-diethyl benzene	0.16	0.01		
1-methyl-3-propyl benzene	0.18	0.02		
1-methyl-3-(1-methylethyl)-benzene	0.09	0.01		

VOAs (continued)	Effluent C18 Eluate	Eluate Blank
1,2-diethyl benzene	0.14	0.04
benzene	0.23	0.01
toluene	0.59	0.03
p-xylene	0.41	0.02
ethylbenzene	0.32	0.03
1-methyl-2-propyl benzene	0.67	0.01
1,3,5-trimethyl benzene	0.17	0.00
1,2-dimethylbenzene	0.69	0.03
1,3-dimethylbenzene	0.55	0.03
Total VOAs =	4.44	0.28
PHENOLICS		
phenol	1.92	0.12
2-methyl phenol	1.34	0.07
3-methyl phenol	1.08	0.06
3,4-dimethyl phenol	0.73	0.06
3-ethyl phenol	0.33	0.02
aniline	0.41	0.05
Total Phenolics =	5.81	0.38
AMINES		
diethanolamine	0.15	0.02
methylamine	0.34	0.02
ethyl amine	0.26	0.03
ethanol amine	0.11	0.01
triazene	0.00	0.00
methyl diethanol amine	0.19	0.02
ethylenediamine	0.28	0.06
Total Amines =	1.33	0.16
ALKANES	1.55	0.10
3-methyl-1-pentene	0.56	0.07
decane	0.70	0.04
2,7-dimethyl octane	0.52	0.05
	0.56	0.09
4-methyl-nonane	·····	
2,6-dimethyloctane	0.13	0.01
3-ethyl-2methyl-heptane	0.21	
undecane	0.37	0.00
dodecane	0.34	0.02
tridecane	0.48	0.03
tetradecane	0.23	0.02
pentadecane	0.13	0.04
hexadecane	0.22	0.03
heptadecane	0.08	0.01
octadecane	0.05	0.01
nonadecane	0.06	0.03
eicosane	0.08	0.00
heneicosane	0,03	0.00
docosane	0.02	0.01
octacosane	0.02	0.00
dotriacontane	0.04	0.00
tetracontane	0.06	0.01
Total Alkanes =	4.89	0.47

5. SUMMARY AND CONCLUSIONS

Effects of "Inlet to Reservoir B" Effluent on Fathead Minnows

There were significant reductions in survival and growth in the untreated effluent C18 eluate. After GAC treatment, there were <u>no</u> significant reductions in survival or growth in the C18 eluate. *Conclusion:* The GAC treatment effectively removed the toxicity from the effluent C18 eluate.

Chemical Analyses of the Effluent Eluate

The effluent eluate and eluate blank were shipped to Dr. Cliff Lange at Auburn University for chemical analysis targeted to chemicals that are typical constituents of petroleum refinery operations (e.g., VOCs, naphthenic acids, naphthalenes, phenolics, alkanes, and amines). The Lab Report for these analyses is provided as Appendix D.

Of particular interest are the reported concentrations of **naphthenic acids**. Naphthenic acids are naturally occurring linear and cyclic carboxylic compounds associated with the acidic fraction of petroleum, and are recognized as common causes of aquatic toxicity in refinery effluents. The cumulative measured concentration of the naphthenic acids included in the analyses of in the C18 eluate was ~5.0 mg/L, which is near the LC50 range reported for aquatic organisms. However, it is important to note that the current analysis was limited to 6 representative compounds, whereas there are over 100 naphthenic acid compounds; this suggests that the concentration of total naphthenic acids in the C18 eluate was much greater than 5.0 mg/L.

Furthermore, it must be noted that in the Phase II TIE C18 elution, methanol is used as the solvent due to the fact the when the eluate is reconstituted to the 1X concentration with Control water, the residual amount of methanol present is below toxicity thresholds. Stronger solvents such as methylene chloride, hexane, etc., would almost certainly have resulted in greater desorption of naphthenic acids from the C18 columns than did methanol, which would have resulted in even higher reported concentrations.

It must be noted that the discussion of naphthenic acids above should not be construed as a conclusion that naphthenic acids are the proximate cause of the observed toxicity or that any of the other contaminants are not the cause(s) of toxicity. Our contracted scope-of-work was the performance of toxicity testing and facilitation of the chemical analyses. Our discussion of naphthenic acids was provided as anecdotal observations based upon previous work performed by our lab for other refinery clients. If a more complete assessment of the roles of these contaminants as causes of toxicity is needed, then a focused assessment on a contaminant-by-contaminant basis may be warranted.

5.1 QA/QC Summary

Test Conditions – Test conditions (pH, D.O., temperature, etc.) were all within acceptable limits. All analyses were performed according to laboratory Standard Operating Procedures.

Negative Lab Control – The biological responses in the Lab Water Control treatments for these tests were within acceptable limits.

Positive Control – The results of the concurrent reference toxicant test were consistent with the "typical response" ranges established by previous reference toxicant tests performed in our lab, indicating that the test organisms used in the current tests were responding to toxic stress in a typical and consistent fashion.

Appendix A

Chain-of-Custody Record for the Collection and Delivery of the Chevron/Cawelo "Inlet to Reservoir B" Effluent Sample

		CHAI	N OF C	CHAIN OF CUSTODY RECORD	RD	
PACIFIC ECORISK 2250 Cordelia Rd	RESULTS TO:	1 ~	FLONGSK	*	BILL TO: PRECISON AN	なみしていてん
Fairfield, CA 94534					32 1974 st.	14 9 22cl
Fn: (707) 207-7916	Attn:				id T	18 LE
www.pacificecorisk.com	Phone:					١. ١
	Email:			•	Sharrise	Palab-Incilon
PROJECT:			-		ANALYSES REQUESTED	
		,				
						REMARKS
SAMPLE IDENTIFICATION	DATE TIME	SAMPLE	GRAB/ COMP.	# CONTAINER S/TYPE		
TNLET TO RES. B	01/11/09 8:2:30	3	GRAB	20/PLASTIC	*	
MALLEY WASTE	1 8:40	ļ		4/PLASTIC	#	7.#
OUTLET T	9:20			4/PLASTIC	#	#3
20	55: 6			4/PLASTIC	#	井中
SPLITTER BOX	11:00			2/PLASTIC	#	#
	01/11/09/12:30	>	→	2 /PLASTIC	#	#6
	•			/		
		·		_		
METHOD OF SHIPMENT:	FedEx:	UPS:	HA	HAND: OTHER:	BR: CONTACT CARLEN	EK
COMMENTS:		-			CODES:	
RELINQUISMED BX: (SIGNATURE)	JRE)	DATE	TIME	RECEIVED BY: (SIGNATURE)	SNATURE) DATE	TIME PAGE#
Start September 1		1/11 B	1080	Alans A	01/11/1	1355 OF
				- × - × - × - × - × - × - × - × - × - ×		8

YELLOW - KEEP FOR YOUR RECORDS

WHITE - RETURN W/SAMPLE

Appendix B

Test Data for the Evaluation
of the Chronic Toxicity of "Inlet to Reservoir B" Eluate
to Fathead Minnows

CETIS Summary Report

Untreated C18 Eluate

Report Date: Test Code:

14 Dec-10 15:18 (p 1 of 1) 40634 | 13-8177-1171

Chronic Larva	l Fish Survival a	nd Gr	owth Test							Pacifi	c EcoRisk
Batch ID: Start Date: Ending Date: Duration:	01-8195-8377 06 Nov-10 15:15 13 Nov-10 09:30 6d 18h	i 1	Test Type: Protocol: Species: Source:	Growth-Survival EPA-821-R-02- Pimephales pro Chesapeake Cu	013 (2002) melas		Di Br	luent: Lai	drick Anderso poratory Wate t Applicable		
Receive Date:	12-5926-3608 11 Jan-10 07:30 11 Jan-10 19:01 299d 8h (1.1 °C		Code: Material: Source: Station:	Eff Effluent Precision Analy Inlet Resv B	tical				ecision Analyti 723	ical	
Batch Note:	Eluate										
Comparison S	Summary								-		
Analysis ID	Endpoint		NOEL		TOEL	PMSD	TU	Method			
10-0110-7501 12-8774-8648 02-8254-6458 07-3627-2687 10-2830-1198	7d Survival Rate Mean Dry Bioma Mean Dry Weigh	ass-mo	0 <100	100 >0 100 >0 100	N/A N/A N/A	14.9% N/A 7.8% 16.0% 1.62%	>1 >1 >1	Fisher E Equal Va Equal Va Equal Va	ariance t Two- xact Test ariance t Two- ariance t Two- ariance t Two-	Sample Te Sample Te Sample Te	st st st
21-0120-1114			0	>0		16.0%		Equal Va	ariance t Two-	Sample Te	st
7d Survival Ra	•										
Conc-%	Control Type Elution Blank	Coun 2			95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Water Contr		1	1 1	1 1	1 1	1 1	0 0	0	0.0% 0.0%	0.0% 0.0%
100	Tab Traisi Com	2	0.05	0.0236	0.0764	0	0.1	0.05	0.0707	141.0%	95.0%
Mean Dry Biomass-mg Summary											
Conc-%	Control Type	Cour	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Elution Blank	2	0.319	0.309	0.328	0.3	0.337	0.0185	0.0262	8.21%	0.0%
0	Lab Water Contr	2	0.337	0.337	0.338	0.337	0.338	0.0005	0.000708	0.21%	-5.97%
100		2	0.009	0.00425	0.0138	0	0.018	0.009	0.0127	141.0%	97.2%
Mean Dry Wei	ght-mg Summar	у									
Conc-%	Control Type	Cour	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Elution Blank	2	0.319		0.328	0.3	0.337	0.0185	0.0262	8.21%	0.0%
0	Lab Water Contr	2	0.337	0.337	0.338	0.337	0.338	0.0005	0.000708	0.21%	-5.97%
100			0.18			0.18	0.18	0	0	0.0%	43.5%
7d Survival R		_									
Conc-%	Control Type	Rep		2					······································		
0	Elution Blank	1	1								-
100	Lab Water Contr	0	0.1								
	mass-mg Detail							· · · ·		· · · · · · · · · · · · · · · · · · ·	
Conc-%	Control Type	Rep	1 Rep	2							
0	Elution Blank	0.3	0.337								
0	Lab Water Contr										
100		0	0.018								
Mean Dry We	ight-mg Detail				:						·
Conc-%	Control Type	Rep	1 Rep	2							
0	Elution Blank	0.3	0.337		•		•				
0	Lab Water Contr	0.338									
100		0.18	•								

Test Code:

14 Dec-10 15:16 (p 3 of 3) 40634 | 13-8177-1171

							Oode.	40004 10-0177-11	, ,
Chronic Larval Fis	h Survival and G	rowth Test				<u>-</u> .		Pacific EcoRis	sk
, and you	0110-7501 Dec-10 15:13		Survival Rate	_			S Version: CETIS	v1.8.0	
Data Transform	Zeta	Alt Hyp	MC Trials		Test Resu	ılt		PMSD	
Angular (Corrected)) 0	C > T	Not Run		Sample fa	ils 7d surviv	al rate endpoint	14.9%	
Equal Variance t T	wo-Sample Test								
Control vs	Conc-%	Test Stat	Critical	DF	MSD	P-Value	Decision(a:5%)		
Lab Water Control	100*	14.4	2.92	2	0.238	0.0024	Significant Effect		
ANOVA Table									
Source	Sum Squares	Mean Squ	are	DF	F Stat	P-Value	Decision(a:5%)		
Between	1.373	1.373		1	207	0.0048	Significant Effect		
Error	0.01327967	0.0066398	33	2					
Total	1.386279	1.37964		3					
Distributional Tes	ts		· ·						
Attribute	Test		Test Stat	Critical	P-Value	Decision	(a:1%)		
Variances	Mod Levene Ed	quality of Variance	7.66E+15	98.5	<0.0001	Unequal \	/ariances	<u> </u>	
Distribution	Shapiro-Wilk W	/ Normality	0.945	-0.335	0.6830	Normal D			
7d Survival Rate S	Summary		The second second	ia-a					

Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Water Contr	2	1	1	1	1	1	0	0	0.0%	0.0%
100		2 .	0.05	0.0231	0.0769	0	0.1	0.05	0.0707	141.0%	95.0%
Angular (C	orrected) Transform	ned Sum	mary								

Angular (Co	orrected) Transform	nea Sum	mary								
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Water Cont	2	1.41	1.41	1.41	1.41	1.41	0	0	0.0%	0.0%
100		2	0.24	0.196	0.284	0.159	0.322	0.0815	0.115	48.0%	83.0%

Error

Total

0.0001625152

0.1080745

8.125762E-05

0.1079932

Untreated C18 Eluate

Report Date: Test Code: 14 Dec-10 15:16 (p 2 of 3) 40634 | 13-8177-1171

Chronic Larval Fish Survival and Growth Test Pacific EcoRisk 02-8254-6458 Endpoint: Mean Dry Biomass-mg CETISv1.8.0 **CETIS Version:** Analysis ID: Parametric-Two Sample Analyzed: 14 Dec-10 15:16 Analysis: Official Results: Yes Zeta **MC Trials Test Result PMSD Data Transform** Alt Hyp Untransformed 0 C > T Not Run Sample fails mean dry biomass-mg endpoint 7.8% **Equal Variance t Two-Sample Test** Control Conc-% Test Stat Critical DF MSD P-Value Decision(a:5%) 2.92 0.0263 Lab Water Control 36.4 2 0.0004 Significant Effect **ANOVA Table** P-Value Mean Square DF F Stat Source **Sum Squares** Decision(a:5%) 0.0008 Between 0.107912 0.107912 1 1330 Significant Effect

Distributional T	l'ests					
Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)	
Variances	Variance Ratio F	323	16200	0.0707	Equal Variances	
Distribution	Shapiro-Wilk W Normality	0.967	-0.335	0.8245	Normal Distribution	

2

3

Mean Dry B	iomass-mg Summa	ary									
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Water Contr	2.	0.337	0.337	0.338	0.337	0.338	0.000498	0.000704	0.21%	0.0%
100		2	0.009	0.00416	0.0138	0	0.018	0.009	0.0127	141.0%	97.3%

CETIS Summary Report GAC-Treated C18 Eluate Report Date:

Test Code:

14 Dec-10 15:39 (p 1 of 1) 40634 | 19-5168-7085

Start Date: 06 Ending Date: 13 Duration: 66 Sample ID: 17 Sample Date: 17 Receive Date: 17 Sample Age: 29 Batch Note: E Comparison Sun Analysis ID E 08-8768-3474 76 14-7811-9408	0-3694-2618 6 Nov-10 15:15 3 Nov-10 09:30 6d 18h 1-7289-6631 1 Jan-10 07:30 1 Jan-10 19:01 299d 8h (1.1 °C) Eluate + GAC mmary Endpoint 7d Survival Rate Mean Dry Bioma	Tes Pro Spe Sou Coo Mat Sou Star	t Type: tocol: ecies: irce: de: terial: irce:	Growth-Survival EPA-821-R-02-(Pimephales pro Chesapeake Cu Eff Effluent Precision Analy Inlet Resv B	013 (2002) melas ultures, Inc.	PMSD	Dilu Brir Age Clie	ent: Labo ne: Not A 1 nt: Prec ject: 1772	ick Andersoi ratory Wate Applicable ision Analyti 3	1	c EcoRisk
Start Date: 06 Ending Date: 13 Duration: 66 Sample ID: 17 Sample Date: 17 Receive Date: 17 Sample Age: 29 Batch Note: E Comparison Sur Analysis ID E 08-8768-3474 76 14-7811-9408 07-9472-0699 M 17-0381-3657 06-7322-1276 M 12-6592-7914	16 Nov-10 15:15 3 Nov-10 09:30 3 d 18h 1-7289-6631 1 Jan-10 07:30 1 Jan-10 19:01 299d 8h (1.1 °C) Eluate + GAC mmary Endpoint 7d Survival Rate Mean Dry Bioma	Pro Spe Sou Mat Sou Star	tocol: ecies: urce: de: terial: urce: tion: NOEL 100 0	EPA-821-R-02-(Pimephales pro Chesapeake Cu Eff Effluent Precision Analy Inlet Resv B LOEL >100	D13 (2002) melas altures, Inc. tical	PMSD	Dilu Brir Age Clie Pro	ent: Labo ne: Not A : 1 nt: Prec ject: 1772	ratory Wate Applicable sion Analyti	· .	
Sample ID: 17 Sample Date: 17 Receive Date: 17 Sample Age: 29 Batch Note: E Comparison Sur Analysis ID E 08-8768-3474 70 14-7811-9408 07-9472-0699 M 17-0381-3657 06-7322-1276 M 12-6592-7914	1-7289-6631 1 Jan-10 07:30 1 Jan-10 19:01 199d 8h (1.1 °C) Eluate + GAC mmary Endpoint 'd Survival Rate	Coc Mat Sou Star	de: terial: urce: tion: NOEL 100	Eff Effluent Precision Analy Inlet Resv B LOEL >100	tical	PMSD	Clie Pro	nt: Prec ject: 1772	•	cal	
Sample Date: 11 Receive Date: 12 Sample Age: 25 Batch Note: E Comparison Sur Analysis ID E 08-8768-3474 76 14-7811-9408 07-9472-0699 M 17-0381-3657 06-7322-1276 M 12-6592-7914	1 Jan-10 07:30 1 Jan-10 19:01 199d 8h (1.1 °C) Eluate + GAC mmary Endpoint 7d Survival Rate	Mat Sou Star	NOEL	Effluent Precision Analy Inlet Resv B LOEL >100	TOEL	PMSD	Pro	ject: 1772	•	cal	
Receive Date: 12 Sample Age: 25 Batch Note: E Comparison Sun Analysis ID E 08-8768-3474 70 14-7811-9408 07-9472-0699 M 17-0381-3657 06-7322-1276 M 12-6592-7914	1 Jan-10 19:01 199d 8h (1.1 °C) Eluate + GAC mmary Endpoint rd Survival Rate Mean Dry Bioma	Sou Star	NOEL 100	Precision Analy Inlet Resv B LOEL >100	TOEL	PMSD				-	
Sample Age: 25 Batch Note: E Comparison Sun Analysis ID E 08-8768-3474 70 14-7811-9408 07-9472-0699 M 07-9472-0699 M 17-0381-3657 06-7322-1276 M 12-6592-7914 M	e99d 8h (1.1 °C) Eluate + GAC mmary Endpoint 'd Survival Rate Mean Dry Bioma	Star	NOEL 100 0	LOEL >100	TOEL	PMSD				-	
Batch Note: E Comparison Sun Analysis ID E 08-8768-3474 70 14-7811-9408 07-9472-0699 M 17-0381-3657 06-7322-1276 M 12-6592-7914	Eluate + GAC mmary Endpoint 'd Survival Rate Mean Dry Bioma	ss-mg	NOEL 100 0	LOEL >100		PMSD					
Comparison Sun Analysis ID E 08-8768-3474 70 14-7811-9408 07-9472-0699 M 17-0381-3657 06-7322-1276 M 12-6592-7914	mmary Endpoint 'd Survival Rate Mean Dry Bioma	_	100 0	>100		PMSD	.			_	
Analysis ID E 08-8768-3474 70 14-7811-9408 07-9472-0699 M 17-0381-3657 06-7322-1276 M 12-6592-7914	Endpoint Of Survival Rate	_	100 0	>100		PMSD	 Til			-	
08-8768-3474 76 14-7811-9408 07-9472-0699 M 17-0381-3657 06-7322-1276 M 12-6592-7914	d Survival Rate	_	100 0	>100		PMSD	TII	5.0			
14-7811-9408 07-9472-0699 M 17-0381-3657 06-7322-1276 M 12-6592-7914	Mean Dry Bioma	_	0		N/A		10	Method			
07-9472-0699 M 17-0381-3657 06-7322-1276 M 12-6592-7914		_	_	>0		14.9%	1	Equal Vari	ance t Two-	Sample Te	st
17-0381-3657 06-7322-1276 M 12-6592-7914		_	100	-		14.9%			ance t Two-	•	
06-7322-1276 M 12-6592-7914	Mean Dry Weigh	•	. 55	>100	N/A	21.3%	1	Equal Vari	ance t Two-	Sample Te	st
12-6592-7914	Mean Dry Weigh		0	>0		22.1%			ance t Two-	•	
		ı-mg	0	>0		17.0%			ance t Two-	•	
7d Survival Rate			100	>100	N/A	17.0%	1	Equal Vari	ance t Two-	Sample Te	st
4	e Summary										
		Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
0 G/	AC Blank	2	0.95	0.924	0.976	0.9	1	0.05	0.0707	7.44%	0.0%
0 La	ab Water Contr	2	1	• 1	1	1	1	0	0	0.0%	-5.26%
100		2	0.95	0.924	0.976	0.9	1	0.05	0.0707	7.44%	0.0%
Mean Dry Bioma	ass-mg Summa	iry									
Conc-% Co	ontrol Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
		2	0.301	0.293	0.31	0.286	0.317	0.0155	0.0219	7.27%	0.0%
0 . La	ab Water Contr	2	0.319	0.309	0.328	0.3	0.337	0.0185	0.0262	8.21%	-5.64%
100		2	0.274	0.267	0.281	0.26	0.288	0.0141	0.0199	7.25%	9.1%
Mean Dry Weigh	ht-mg Summary	<i>'</i>									
Conc-% Co	ontrol Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
		2	0.317	0.317	0.318	0.317	0.318	0.000389	0.00055	0.17%	0.0%
	ab Water Contr	_	0.319	0.309	0.328	0.3	0.337	0.0185	0.0262	8.21%	-0.35%
100		2	0.288	0.288	0.289	0.288	0.289		0.000557		9.1%
7d Survival Rate	e Detail								0.000001	0.1070	3.170
		Rep 1	Rep 2								
	AC Blank	0.9	1	·			·····				
1	ab Water Contr		1								
100	ab water contr	1	0.9								
Mean Dry Bioma	ass-mg Detail		· -,,								
-	=	Rep 1	Rep 2	!							
	AC Blank	0.286	0.317								
1	ab Water Contr		0.337							•	
100	as riator conti	0.288	0.26								
Mean Dry Weigh	ht-mg Detail	· · · · · · · · · · · · · · · · · · ·				*					
1	ontrol Type	Rep 1	Rep 2	!							
	SAC Blank	0.318	0.317								
I .	ab Water Contr		0.317								
100	Trater Conti	0.288	0.337								

GAC-Treated C18 Elvate CETIS Analytical Report

Report Date:

14 Dec-10 15:39 (p 4 of 4)

 Test Code:	40634 19-5168-7085
	Pacific EcoRisk

Chronic Larval Fish Survival and Growth Test Analysis ID: Endpoint:

CETISv1.8.0 **CETIS Version:**

08-8768-3474 14 Dec-10 15:38

7d Survival Rate Analysis:

Parametric-Two Sample

Official Results: Yes

Data Transform	Zeta	Alt Hyp	MC Trials	Test Result	PMSD	•
Angular (Corrected)	0	C > T	Not Run	Sample passes 7d survival rate endpoint	14.9%	

Equal Variance t Two-Sample Test

Control vs	Conc-%	Test Stat	Critical	DF	MSD	P-Value	Decision(a:5%)
Lab Water Control	100	1	2.92	2	0.238	0.2113	Non-Significant Effect

ANOVA Table

Analyzed:

ANOTA TUDIO							
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)	
Between	-0.006639833	- 0:006639833	1	- 1	0.4226	Non-Significant Effect	
Error	0.01327967	0.006639833	2				
Total	0.0199195	0.01327967	3				

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)	
Variances	Mod Levene Equality of Variance	65500	98.5	<0.0001	Unequal Variances	
Distribution	Shapiro-Wilk W Normality	0.945	-0.335	0.6830	Normal Distribution	

7d Survival Rate Summary

Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Water Contr	2	1	1	1.	1	1	0	0	0.0%	0.0%
100		2	0.95	0.923	0.977	0.9	1	0.05	0.0707	7.44%	5.0%

Angular (Corrected) Transformed Summary

Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Water Cont	2	1,41	1.41	1.41	1.41	1.41	0	0 .	0.0%	0.0%
100		2	1.33	1.29	1.37	1.25	1.41	0.0815	0.115	8.66%	5.77%

Graphics

CE 113 Alla	аупса керс	on C	4/ \C- (r Octo		C (- ()		Code:			9 (6 2 01 4) 9-5168-7085
Chronic Larv	al Fish Survival	and Growtl	n Test							Pacif	ic EcoRisk
Analysis ID: Analyzed:	07-9472-0699 14 Dec-10 15:3		•	an Dry Bioma ametric-Two	_			S Version: ial Results:	CETISv1. Yes	8.0	
Data Transfo		Zeta	Alt Hyp	MC Trials		Test Resu				PMSD	
Untransforme	d	0	C > T	Not Run		Sample pa	asses mean	dry biomass	s-mg endpoi	in £1 .3%	
Equal Varian	ce t Two-Sample	Test			•						
Control	vs Conc-%		Test Stat	Critical	DF	MSD	P-Value	Decision(a:5%)		
Lab Water Co	ontrol 100		1.91	2.92	2	0.0678	0.0979	Non-Signif	icant Effect		
ANOVA Table	B										
Source	Sum Squ	ares	Mean Squ	are	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.0019757		0.0019757		1	3.66	0.1958	Non-Signi	icant Effect		
Error	0.0010793		0.0005396		2						
Total	0.0030551	127	0.0025154	47	3						
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Variance			1.73	16200	0.8270	Equal Var				
Distribution	Shapiro-\	Nilk W Norr	mality	0.84	-0.335	0.1942	Normal D	stribution			
Mean Dry Bio	omass-mg Sumn	nary									
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Water Cont	r 2	0.319	0.309	0.328	0.3	0.337	0.0185	0.0262	8.21%	0.0%
100		2	0.274	0.266	0.282	0.26	0.288	0.0141	0.0199	7.25%	14.0%
Graphics	,										
0.35 [-						0.020 _					
		<u> </u>						! !		•	
0.30	L		,			0.015		1	•	•	
E			•			0.010		į			
0.25 -				Reject Null	- <u>}</u>	Untransformed		i i			
± 0.20 −					,	0.005		i I	1		
Mean Dry 85 0'50	•					5 0,000			/ · 	- 	-
0.15						ŧ		- //:			

7 Day Chronic Fathead Minnow Toxicity Test Data

Client:	Pro	ecision Analyti	cal	Organism Log#:	25191	Age: _	<24h
Test Material:	In	let to Reservoir	В	Organism Supplier:	ABS		
Test ID#:	40634	Project #:	17723	Control/Diluent:		ЕРАМН	
Test Date:	1-6:10			Control Water Batch: _	1336		

Treatment	Temp	pl	i	D.O. (r	ng/L)	Conductivity	#	Live Or	ganisms		SIGN OFF
Treatment	(°C)	New	Old	New	Old	(μs/cm)	Α	В			SIGN-OFF
Lab Control	25.4	8.19		8.6		3/8	्व	16			Date: 11.6-10
Eluate Blank	25.4	8.16		9,5	44. 43. jú	3/5	10	16			Test Solution Prep:
100% Eluate	25.4	8.10		9.6		3/6	10	10			New WQ: SG -
Eluate + GAC Blank	25.4	7.97		9.4		259	10	10			Initiation Time: 1515
Eluate + GAC	25.4	7.75		9.4		256	10	10		2	Initiation Signoff:
											Sample ID: 23374
Meter ID	30 A	P409		R403		Ec04					
Lab Control	15.7	8.12	8.14	8.8	7.9	320	10	ادا			Date: 7 10
Eluate Blank	25.~	7.97	8.04	10-0	7.8	312	10	10			Test Solution Prep: ント
100% Eluate	25.2	7.99	8.03	10.1	0.8	313	10	ID			New WQ:
Eluate + GAC Blank	25.2	7.34	7.35	9.5	8.1	243.2	/0	15			Renewal Time:
Eluate + GAC	25,2	7.00	7.19	9.6	8.1	252.7	10	10			Renewal Signoff:
											Old MO:
Meter ID	30A	ph03	pho3	RD03	R-003	Ec03					
Lab Control	250	8.35	7.99	9.4	8.2	314	10	10		10.1	Date: 18/10
Eluate Blank	25.0	8.21	7.70	11.4	6.8	313	10	10			Test Solution Prep:
100% Eluate	250	8.08	7.76	11.3	7.0	313	10	9			New WQ:
Eluate + GAC Blank	25.0	7.43	7.35	11.0	7.6	255	10	10			Renewal Time:
Eluate + GAC	25.0	7.26	J.10	10.7	6.9	253	lO	10			Renewal Signoff:
				10		1					Old MO:
Meter ID	30A	POXPS	phog	ROOL	1004	Ec05					
Lab Control	25.2	8.25	1.	9.0	15.3	218	10	10			Date:
Eluate Blank	25.2	8.18	385	10.9	5.4	306	10	10			Test Solution Prep: こんと
100% Eluate	25.2	8.13	7.82	12.4	5.9	246	9	7			New WQ:
Eluate + GAC Blank	25.2	8,25	7.60	12.4	6.4	252	io	10	79		Renewal Time:
Eluate + GAC	25.2	7.70		12.7	5.7	312	10	10			Renewal Signoff:
											Old WQ: 9 W
Meter ID	301	p4 14	phog	2009	2005	EL05			11.50		100

7 Day Chronic Fathead Minnow Toxicity Test Data

Client: Test Material:	Precision Analytical Inlet to Reservoir B	Organism Log#: 2	15191 Age:	<24 hos
Test ID#:	40634 Project #: 17723	Control/Diluent:	ЕРАМН	
Test Date:	1.6.10 Randomization: NA	Control Water Batch:	1336	
		Fraction:	0	

Treatment	Temp (°C)	p. new	H old	D.O. (mg/L) old	Conductivity (µs/cm)	# A	Live Or B	ganisms	SIGN-OFF
Lab Control	25.3	9.56	8.03	8.5	2.8	320	10	10		Date: 11 - 10 - 10
Eluate Blank		8.44	7,84	9.9	2.6	312	10	۵۱		Test Solution Prep:
100% Eluate	25.3	8 33	7.51	9.9	1.4	315	3	2	1.5	New WO:
Eluate + GAC Blank	75.3		7.51	9.9	5.7%	248	10	ιU		Renewal Time: \3いる
Eluate + GAC	25.3	8.41	7.32	9.7	2.0	253	0	10		Renewal Signoff:
							160			Old W.Q: Jy
Meter ID	48A	Phiy	PhIY	R105	ROOS	EC03				
Lab Control	25.3	8.23	7.94	9.4	7.6	307	10	10		Date: 11-11-10
Eluate Blank	25,3	7.96	7.84	NO	φ .0	307	10	10		Test Solution Prep:
100% Eluate	25.3	7.92	7.67	[1.]	5.1	312	1	2		Hem MG: ZAN
Eluate + GAC Blank	25.3	797	7.23	11.3	7.5	246.2	10	10		Renewal Time:
Eluate + GAC	25.3	1.75	7.22	10.9	7.0	252.3	10	10		Renewal Signoff:
										Old MO: SVV
Meter ID	484	0403	ph03	12004	12004	E005				
Lab Control	24.8	8.57	8.32	9.1	8,5	318	10	10		Date: //2-/0
Eluate Blank	24.8	8.45	8.07	6.3	68	307	10	10		Test Solution Prep:
100% Eluate	24.8	8.24	8.02	10.2	7.2	325	0	1		New WQ:
Eluate + GAC Blank	248	8.19	7.83	10.9	7.3	249.5	9	10		Renewal Time:
Eluate + GAC	24.8	7.90	7.54	10.7	7.5	249.2	IS IA	9		Renewal Signoff:
		Ç.				e de la compa	les:			Old WQ!
Meter ID	488	Phiu	Ph03	ROOS	RD03	6004				
Lab Control	24.9		8.20	1	5.1	338	10	lə		Date: 11-13-10
Eluate Blank	249		7.84		5.8	345	10	10		Termination Time:
100% Eluate	24.9		7.81		5.8	344	~	1		Termination Signoff:
Eluate + GAC Blank	249		7-85		5.8	275	9	10	100	Old WQ: N V 5
Eluate + GAC	24.9		7-37		6.5	289	10	q		
						erre line in a service and a s		1		
Meter ID	484	200	pH 03	276	1005	Eco5				

Fathead Minnow Dry Weight Data Sheet

Client:	Precision Analytical ,	Test ID #:	40634	Project #	17723
Sample: _	Inlet to Reservoir B	Tare Weight Date:	116110	Sign-off:	
Test Date: _	H13-10 11.6.10	Final Weight Date:	11/17/10	Sign-off:	09

-Pan-ID	Treatment Rep	licate	Initial Pan Weight (mg)	Final Pan Weight (mg)	Initial # of Organisms	Biomass Value (mg)
1	Lab Control	Α	181.84	184.84	jΟ	0.30
<u>a</u>		В	168.62	171.99	(0	0.337
3	Eluate Blank	Α	186.37	189, 75	10	0.338
4	1	В	163.81	167.278	10	0.337
5	100% Eluate	Α	166.87			_
6		В	172.65	172.83	10	0.018
7	Eluate + GAC	Α	173.99	176.85	(0)	0.286
8	Blank	В	174.67	177.84	(0	0.28-0.327
9	Eluate + GAC	Α	181.29	184.10	. (0	0.288
.10		В	176.98	179.58	10	0.260
QA1			185.40	185.40		
Balance ID:			#1	业/		$A_{ij} = A_{ij} = A_{ij}$

Appendix C

Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Fathead Minnows

CETIS Summary Report

Report Date:

24 Nov-10 10:19 (p 1 of 2)

Test Code:

40635 | 02-9408-1320

							lest Code	40635 02-9408-132
Chronic Larva	l Fish Survival and Gr	owth Test						Pacific EcoRis
Batch ID:	11-0047-6335	Test Type:	Growth-Survi	val (7d)	-		Analyst:	Padrick Anderson
Start Date:	06 Nov-10 15:30	Protocol:	EPA-821-R-0	2-013 (2002)			Diluent:	Laboratory Water
Ending Date:	13 Nov-10 10:00	Species:	Pimephales p	romelas			Brine:	Not Applicable
Duration:	6d 18h	Source:	Chesapeake				Age:	1
0	04 4954 4990	0-4-						
Sample ID:	04-1854-4806	Code:	NaCl				Client:	Pacific Ecorisk
	06 Nov-10 15:30	Material:	Sodium chlor				Project:	17724
	06 Nov-10 15:30	Source:	Reference To	exicant				
Sample Age:	N/A (25.4 °C)	Station:	In House	Marine we Kalifa i weeks Marin	rio e di si di ababasira		odersendt Sachana	
Comparison S	ummary	-						<u>and the entropy of the second first figure in the larger of the level of the entropy of the frequency and the frequency</u>
Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	TU	Met	thod
	7d Survival Rate	1.5	3	2.121	27.9%		Dur	nett's Multiple Comparison Test
	Mean Dry Biomass-mg	g 1.5	3	2.121	27.9%		Dur	nett's Multiple Comparison Test
11-9125-8327	Mean Dry Weight-mg	6	>6	N/A	35.5%		Dur	nnett's Multiple Comparison Test
Point Estimate	Summary							
Analysis ID	Endpoint	Level	g/L	95% LCL	95% UCL	TU	Met	thod
08-2994-1963	7d Survival Rate	EC10		1.74	2.46		Line	ear Regression (MLE)
		EC15		1.97	2.69			
		EC20		2.18	2.9			
		EC25		2.37	3.09			
		EC40		2.93	3.63			
		EC50		3.32	4.01			
08-4855-7672	Mean Dry Biomass-mg	-	1.58	N/A	1.78		Line	ear Interpolation (ICPIN)
	•	IC10	1.72	N/A	2.03			
		IC15	1.87	N/A	2.36			
	,	IC20	2.01	0.849	2.66			
		IC25	2.16	1.31	2.97			
		IC40	2.6	1.83	4.02	•		
		IC50	2.89	2.13	4.82			
16-9043-4162	Mean Dry Weight-mg	IC5	1.06	N/A	2.97		Line	ear Interpolation (ICPIN)
	· .	IC10	1.37	N/A	N/A			
		IC15	1.82	N/A	N/A		•	•
		IC20	2.37	N/A	N/A			
		IC25	2.93	0.596	N/A			
		IC40	>6	N/A	N/A			
		IC50	>6	N/A	N/A			

Report Date:

24 Nov-10 10:19 (p 2 of 2)

Test Code:	40635	02-9408-13
	Da	cific EcoBio

val Fish Survival a	and Grow									
		th Test							Pacif	ic EcoRisi
Rate Summary										
Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
Lab Water Contr	4	0.8	0.77	0.83	0.7	0.9	0.0408	0.0816		0.0%
	4	0.825	0.761	0.889	0.6	1	0.0854			-3.12%
	4	0.9	0.847	0.953	0.7	1	0.0707			-12.5%
	4	0.525	0.469	0.581	0.4	0.7				34.4%
	4	0.15	0.128	0.172	0.1					81.3%
	4	0	0	0	0	0 .	0	0	30.370	100.0%
omass-mg Summ	ary		_							
Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
Lab Water Contr	4	0.303	0.274	0.333	0.212	0.4	0.0394			0.0%_
	4	0.306	0.295	0.317	0.267	0.333				-0.99%
	4	0.298	0.286	0.309	0.251	0.316				1.9%
	4	0.141	0.112	0.169						
	4	0.0472	0.0364							53.7%
	4								01.7%	84.4%
eight-mg Summar	у									100.0%
Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dov	CV9/	0/ 546
Lab Water Contr	4	0.378								%Effect
	4									0.0%
	4									-0.78%
										11.8%
•										33.2%
Rate Detail			0.200	0.000	0.2	0.445	0.0624	0.125	40.1%	17.6%
	Ren 1	Pan 2	Don 2	Don 4						
								,		
LLD Trater Conti										
•	0	0	0	0						
-										
		Rep 2	Rep 3	Rep 4						
Lab Water Contr				0.279						······································
		0.333	0.3	0.267						
	0.312	0.316	0.311	0.251						
	0.188	0.223	880.0	0.063						
	0.021	0.089	0.039	0.04						
	0	0	0 -	0						
eight-mg Detail		-			··.				<u></u> -	
Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
Lab Water Contr	0.265	0.403	0.444	0.399						
			0.3							
	U.361	U.416	U.3	11.442						
	0.361 0.312	0.416 0.316		0.445 0.359						
	0.361 0.312 0.313	0.416 0.316 0.319	0.3 0.346 0.22	0.445 0.359 0.158						
	Control Type Lab Water Control Control Type	Control Type Count Lab Water Contr 4 4 4 4 4 comass-mg Summary Control Type Count Lab Water Contr 4 4 4 4 4 4 4 4 4 4 4 4 4	Control Type	Control Type	Control Type	Control Type Count Mean 95% LCL 95% UCL Min Lab Water Contr 4 0.8 0.77 0.83 0.7 4 0.825 0.761 0.889 0.6 4 0.9 0.847 0.953 0.7 4 0.525 0.469 0.581 0.4 4 0.15 0.128 0.172 0.1 4 0.15 0.128 0.172 0.1 Control Type Count Mean 95% LCL 95% UCL Min Lab Water Contr 4 0.303 0.274 0.333 0.212 4 0.298 0.286 0.309 0.251 4 0.141 0.112 0.169 0.063 4 0.0472 0.0364 0.0581 0.021 eight-mg Summary Control Type Count Mean 95% LCL 95% UCL Min Lab Water Contr 4 0.381 0.357 0.404 0.3	Control Type	Control Type	Control Type	Control Type

Analyst: PM QA: A

7 Day Chronic Fathead Minnow Reference Toxicant Test Data

Client:	Reference	ce Toxica	nt	40049 n Log#:_	25191	_ Age:	424h
Test Material:	Sodium	n Chloride		Organism Supplier:		<u> </u>	
Test ID#:	40635 Proj	ject #:	17724	Control/Diluent:		ЕРАМН	
Test Date: <u>//</u>	1-3210	Random	ization: 4.6.]	Control Water Batch:	1336		

							<u> </u>				<u> </u>
Treatment (g/L)	Temp (°C)	New P	H Old	D.O. ((mg/L) Old	Conductivity (µs/cm)	A	# Live O B	rganism *C	s D	SIGN-OFF
Control	254				Old	225	10	10	10	<u> </u>	Date: 1 10
0.75	25.4	8.02 7.98		9.0		327 1944	13	1-0	- rô	10	Test Solution Prep:
1.5	25.4	7.93		9.0		3320	13	10	10	10	New WQ:
3	25.4	7.50		9. /		6/20	10	10	19	10	Initiation Time:
6	25.4	7.84		9./		18150	10	10	(3	10	Initiation Signoff
9	25.4	7.80		9:1		14970	10	19	10	10	RT Stock Batch #:
Meter ID	30A	PK14		RP14		Eco3					
Control	25.4	8.09	8.19	8.6	4.5	325	9	9	9	9	Date: 11/7/10
0.75	25.4	8.0Z	8.07	8,7	7.5	1784	10	10	10	8	Test Solution Prep:
1.5	25.4	7.97	8.02	8.9	7.3	3240	10	10	10	9	New WQ:
3	25.4	7.94	7.92	9.0	7.4	5940	10	10	00	10	Renewal Time:
6	25.4	7.89	7.82	9.1	7.3	11190	4	10	7	10	Renewal Signoff:
9	75.4	~	7.78		7.4	_	0	0	0-	Ö	Old WQ: SW
Meter ID	30x	PH 14	Ph03	Rooy	RD03	Eco3					RT Stock Batch #:
Control	25.0	8.25	8.01	9.3	6.9	31 6 0	9	8	9	8	Date: 8 C
0.75	25.0	8.12	7.88	4.5	6.6	1736	9	8	10	6	Test Solution Prep:
1.5	25.0	803	7.86	9.4	7.2	3140	10	10	9	9	New WQ:
3	25.0	7.98	7.83	9.8	7.4	6020	9	10	9	9	Renewal Time: 1030
6	25-0	7.84	7.79	10.3	7.3	11190	2	10	5	8	Renewal Signoff:
9		_	_	ľ		_		-	_	1	Old MO.
Meter ID	304	9409	phod	Roof	PD04	ELOS					RT Stock Batch #:
Control	25.4	8.17	7.36	9.1	5,1	318	9	8	9.	7	Date: 11. 9.10
0.75	25.4	8.11	7.40	8.9	5.0	1581	9	8	10	6	Test Solution Prep:
1.5	25.4	8.03	1,47	9.1	4.7	3160	10	10	9	9	New WQ:
3	25.4	7.97	7.46	9.4	4.8	6010	9	10	9	9	Renewal Time: 12:55
6	25.4	7.91	7.48	9.7	643	11350	2	8	4	6	Renewal Signoff:
9	_	-	_	_	11	_	-	-	-	_	Old WQ:
Meter ID	30A	рНІЧ	ph 04	ROOY	RIOS	č(05					RT Stock Tales #:

7 Day Chronic Fathead Minnow Reference Toxicant Test Data

Client:	Reference Toxicant	Organism Log#: Z5/5/	Age: 624hrs
Test Material:	Sodium Chloride	O	
Test ID#:	40635 Project #: 17724	Control (Dil	
Test Date:	11/1/10 Randomization: 4.6.1	Control Water Batch: 1336	
	//wh	Control Water Balch: 7336	

Test Di	ate: 19	12	Ra	ndomizatio	on: <u>4.6.</u>	Control W	ater Batc	h:		330	6
Treatment (g/L)	1 22		pН	D.C). (mg/L)	Conductivity	T	# Live	Organisr	ne	
	(°C)	new	old	new	old	(µs/cm)	A	В	C	D	SIGN-OFF
Control	25.3	10.0	1 8.06	8.5	6.8	322	9	8	9	7	Date:
0.75	25.3	8.01	7.88	8.7	6.3	1898	9	8	10	 '-	Test Solution Prep:
1.5	25-3	7.90	7.81	8.8	6.7	3390	10		9	9	New WQ:
3	25.3	7./7	7.74	9.0		6120	9	9	8	9	Renewal Time:
6		790	7.68	9.2	X8	11180	1	4	3	4	Renewal Signoff:
9	25-3	7-86		9.7	71	14900	_	-	_		Old WO: Au
. Meter ID	30A	Ph 14	only	RDOS	1005						RT Stock Batch #:
Control	25.3	8.31	8.13	8.6	7.5	 	8	8	9	7	Date:
0.75	25.3	8.23	7.97	8.1	7.6	1799	9	8	10	/	11-11-10 Test Solution Prep:
1.5	253	8.18	7.89	8,9	7.8	3420	10	10	9	6	New WQ: 2
3	25.3		7.80	9,0	7.7	6010	9	8	5	7	Renewal Time:
6		8,07		9.5	7.2	11400					Menewal Signoff
9			. —		-		-	3	2	7	Old WQ: SVV
Meter ID	48A	1412	ph03	R095	PD04	Eloz					RT Stock Batch #:
Control		8.29		8.9	7,8		8	0		<u> </u>	Date: (66
0.75	250	8.17	7.88	8.8	7.8	317	- -	8	9	7	11-12-10 Test Solution Prep:
1.5		8.13	7.80	9.0	7.6	2052	9		D	10	77.30
3				<u> </u>		3120	0/	10	9		New WQ: SV V Renewal Time:
6				9.2	7.7	5880	9		5	<u> </u>	11:55
9	23,0	7.97	1.40	9.5	7.5	11210	1	3	1	2	Renewal Signoff:
Meter ID	110 -		11.11	_	-			-	-	-	old WQ: AW
Control		ph03	1 2	HD03	Rooy	E103					KT Stock Batch #:
	28.1	Contract Contract	8.17		6.6	326	8	8	1	7	Date: 11-13-10
0.75	25.1	22.2	7.87	b	18/2	2066	9	8	10		Fermination Time:
1.5	25.		7.73		6.5	3370	W	w	9		ermination Signoff:
3	25.1		1.08		6.7	6120	6	7			SVV
6	25.1		7.64		7.7	11590	l	2	-	z	
9			-		_		_	_	_		
Meter ID	48A		pho9		RD04	EW4				\dashv	
	I hay	A STATE OF THE PARTY OF THE PAR		CONTRACTOR OF STREET	' ' '		2000	Kess S	rock h		

Fathead Minnow Dry Weight Data Sheet

Client: _	Reference Toxicant	_ Test ID #: _	40635	Project #	17724
Sample:	Sodium Chloride	_ Tare Weight Date: _	11/6/10	Sign-off:	16
Test Date: _	11.4.10.	_ Final Weight Date: _	11/17/10	Sign-off:	CB

Pan ID	Concentration Replicate	Initial Pan Weight (mg)	Final Pan Weight (mg)	Initial # of Organisms	Biomass Value (mg)
1	Control A	165.19	167.31	10	0.212
2	В	179.83	183.05	10	0.322
3	С	189.74	193.74	10	0,400
4	D	179.23	182.02	10	0279
5	0.75 A	17180g 76	175.01	10	0.325
6	В	169.96	173.29	10	0.333
7	C	185. al	188.21	0	0.300
8	D	163.50	166.17	10	0.267
9	1.5 A	175.84	178.96	10	0.312
10	В	165.95	169.11	(0	0.316
11	С	167.17	170.28	10	0.312 D.316 D.311
12	D	177.83	180.34	10	0.251
13	3 A	174.63	176.41	10	0.188
14	В	164.54	166.77	/ D	0.237 0,223
15	. <u>C</u>	173.52	174.40	10	0.088 0.083
16	D	168.38	168.91	[0	0.063
. 17	6 A	187.09	197.30	10	0.021
18	В	170.65	171.64	10	0.089
19	C	181.61	182.00	10	0.039
20	D	179.35	179.75	10	0.040
21	9 A	177.95		10	
22	В	170.07		10	
23	С	174.31	_	10	
24	D	166.13		N	
QA1	1 1 1 J	166.11	166.53		
QA2		169.13	169, 13		
QA3		184.14	184.14		
Balance ID:		#1	#]		

Appendix D

Laboratory Report for Chemical Analyses of Effluent C18 Elutriate

1251 Ingleside Dr. Auburn, AL 36830 tel: (334) 844-6275 fax: (334) 844-6290

November 29, 2010

Scott Ogle, Ph.D.
Pacific EcoRisk, Inc.
2250 Cordelia Rd.
Fairfield, CA 94534
PH: 707-207-7762 (direct)

PH: 707-207-7760 (general

Re: Refinery Hydrocarbons in two Eluent Samples

Two (2) samples of eluent from were forwarded from Pacific Ecorisk to Dr. Cliff Lange. Samples were extracted using methylene chloride and concentrated to twenty times the initial concentration using a rotary evaporator. Naphthenic acids we analyzed using BF3/Methanol derivatization followed by GC-FID analysis. Phenols, alkanes, and aromatics were analyzed using EPA Method 625. The amounts of phenolic compounds, alkanes, naphthenic acids, and surfactants, were determined by gas chromatography and are summarized in Table 1.

QA/QC data is presented in Table 2. In general, all check samples were within(plus/minus) ten percent of the actual value.

Warmest Regards,

Dr. Cliff Lange

Table 1. Results of analysis of two Eluent Samples

ruble 2: Results of allulysis	CC Refinery	CC Refinery
Pacific Ecorisk	Eluate Eff 1X	Eluate BLK 1X
Sample Date 11-5-10		
Units	mg/L	mg/L
	. 0,	
Aromatics		
1,2,4-trimethylbenzene	0.13	0.01
1-ethyl-2-methyl benzene	0.11	0.03
1,3-diethyl benzene	0.16	0.01
1-methyl-3-propyl-benzene	0.18	0.02
1-methyl-3-(1-methylethyl)-benzene	0.09	0.01
1,2-diethyl benzene	0.14	0.04
benzene	0.23	0.01
toluene	0.59	0.03
p-xylene	0.41	0.02
ethylbenzene	0.32	0.03
1-methyl-2-propyl benzene	0.67	0.01
Phenol	1.92	0.12
2-methyl phenol	1.34	0.07
3-methyl phenol	1.08	0.06
1,2-dimethylbenzene	0.69	0.03
1,3-dimethylbenzene	0.55	0.03
3,4-dimethyl phenol	0.73	0.06
3-ethyl phenol	0.33	0.02
Analine	0.41	0.05
1,3,5-trimethyl benzene	0.17	0.00
1-methyl-naphthalene	0.11	0.00
2-methyl-naphthalene	0.13	0.00
1,5-dimethyl-naphthalene	0.11	0.00
1,7-dimethyl-naphthalene	0.03	0.00
Naphthalene	0.21	0.01
NAPHTHENIC ACIDS		
Cyclohexanecarboxylic acid	0.97	0.04
Methyl-pentyl cyclohexanecarboxylic		
acid	: 0.61	0.06
Methyl,pentylcyclopentanecarboxylic	0.00	
lacid	0.80	0.03
Heptylcyclohexanecarboxylic acid	0.75	0.09
Cyclopentanecarboxylic acid	1.13	0.05
Diethylcyclopentanecarboxylic acid	0.76	0.04
Alkanes	<u> </u>	
3-methy-1-pentene	0.56	0.07
Decane	0.70	0.04
		0.04

Methylamine 0.34 0.02 ethyl amine 0.26 0.03 Ethanol amine 0.11 0.01 Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.02			
2,6-dimethyloctane 0.13 0.01 3-ethyl-2methyl-heptane 0.21 0.00 Undecane 0.37 0.00 Dodecane 0.34 0.02 Tridecane 0.48 0.03 Tetradecane 0.23 0.02 Pentadecane 0.13 0.04 Hexadecane 0.02 0.03 Heptadecane 0.08 0.01 Octadecane 0.05 0.01 Nonadecane 0.08 0.00 Heneicosane 0.08 0.00 Docosane 0.02 0.01 Octacosane 0.02 0.00 Dotriacontane 0.04 0.00 Tetracontane 0.06 0.01 AMINES 0.02 0.02 Diethanolamine 0.15 0.02 Methylamine 0.34 0.02 ethyl amine 0.26 0.03 Ethanol amine 0.11 0.01 Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.02		0.52	0.05
3-ethyl-2methyl-heptane 0.21 0.00 Undecane 0.37 0.00 Dodecane 0.34 0.02 Tridecane 0.48 0.03 Tetradecane 0.23 0.02 Pentadecane 0.13 0.04 Hexadecane 0.22 0.03 Heptadecane 0.08 0.01 Octadecane 0.05 0.01 Nonadecane 0.06 0.03 Eicosane 0.08 0.00 Heneicosane 0.03 0.00 Docosane 0.02 0.01 Octacosane 0.02 0.00 Dotriacontane 0.04 0.00 Tetracontane 0.06 0.01 AMINES International mine 0.15 0.02 Methylamine 0.34 0.02 ethyl amine 0.26 0.03 Ethanol amine 0.11 0.01 Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.	4-methyl-nonane	0.56	0.09
Undecane 0.37 0.00 Dodecane 0.34 0.02 Tridecane 0.48 0.03 Tetradecane 0.23 0.02 Pentadecane 0.13 0.04 Hexadecane 0.22 0.03 Heptadecane 0.08 0.01 Octadecane 0.05 0.01 Nonadecane 0.06 0.03 Eicosane 0.08 0.00 Docosane 0.02 0.01 Octacosane 0.02 0.01 Dotriacontane 0.04 0.00 Tetracontane 0.06 0.01 AMINES 0.02 0.02 Diethanolamine 0.15 0.02 Methylamine 0.34 0.02 ethyl amine 0.26 0.03 Ethanol amine 0.11 0.01 Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.02	2,6-dimethyloctane	0.13	0.01
Dodecane 0.34 0.02 Tridecane 0.48 0.03 Tetradecane 0.23 0.02 Pentadecane 0.13 0.04 Hexadecane 0.022 0.03 Heptadecane 0.08 0.01 Octadecane 0.05 0.01 Nonadecane 0.06 0.03 Eicosane 0.08 0.00 Heneicosane 0.03 0.00 Doctacosane 0.02 0.01 Octacosane 0.02 0.00 Dotriacontane 0.04 0.00 Tetracontane 0.06 0.01 AMINES 0.02 Diethanolamine 0.15 0.02 Methylamine 0.34 0.02 ethyl amine 0.26 0.03 Ethanol amine 0.11 0.01 Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.02	3-ethyl-2methyl-heptane	0.21	0.00
Tridecane 0.48 0.03 Tetradecane 0.23 0.02 Pentadecane 0.13 0.04 Hexadecane 0.22 0.03 Heptadecane 0.08 0.01 Octadecane 0.05 0.01 Nonadecane 0.06 0.03 Eicosane 0.08 0.00 Heneicosane 0.03 0.00 Docosane 0.02 0.01 Octacosane 0.02 0.00 Dotriacontane 0.04 0.00 Tetracontane 0.06 0.01 AMINES 0.02 0.02 Methylamine 0.34 0.02 ethyl amine 0.26 0.03 Ethanol amine 0.11 0.01 Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.02	Undecane	0.37	0.00
Tetradecane 0.23 0.02 Pentadecane 0.13 0.04 Hexadecane 0.22 0.03 Heptadecane 0.08 0.01 Octadecane 0.05 0.01 Nonadecane 0.06 0.03 Eicosane 0.08 0.00 Heneicosane 0.03 0.00 Docosane 0.02 0.01 Octacosane 0.02 0.00 Dotriacontane 0.04 0.00 Tetracontane 0.06 0.01 AMINES 0.02 Diethanolamine 0.15 0.02 Methylamine 0.26 0.03 Ethanol amine 0.11 0.01 Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.02	Dodecane	0.34	0.02
Pentadecane 0.13 0.04 Hexadecane 0.22 0.03 Heptadecane 0.08 0.01 Octadecane 0.05 0.01 Nonadecane 0.06 0.03 Eicosane 0.08 0.00 Heneicosane 0.03 0.00 Docosane 0.02 0.01 Octacosane 0.02 0.00 Dotriacontane 0.04 0.00 Tetracontane 0.06 0.01 AMINES Sicularia de la companya de la com	Tridecane	0.48	0.03
Hexadecane 0.22 0.03 Heptadecane 0.08 0.01 Octadecane 0.05 0.01 Nonadecane 0.06 0.03 Eicosane 0.08 0.00 Heneicosane 0.03 0.00 Docosane 0.02 0.01 Octacosane 0.02 0.00 Dotriacontane 0.04 0.00 Tetracontane 0.06 0.01 AMINES Diethanolamine 0.15 0.02 Methylamine 0.34 0.02 ethyl amine 0.26 0.03 Ethanol amine 0.11 0.01 Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.02	Tetradecane	0.23	0.02
Heptadecane 0.08 0.01 Octadecane 0.05 0.01 Nonadecane 0.06 0.03 Eicosane 0.08 0.00 Heneicosane 0.03 0.00 Docosane 0.02 0.01 Octacosane 0.02 0.01 Ottacontane 0.04 0.00 Tetracontane 0.06 0.01 AMINES Diethanolamine 0.15 0.02 Methylamine 0.34 0.02 ethyl amine 0.26 0.03 Ethanol amine 0.11 0.01 Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.02	Pentadecane	0.13	0.04
Octadecane 0.05 0.01 Nonadecane 0.06 0.03 Eicosane 0.08 0.00 Heneicosane 0.03 0.00 Docosane 0.02 0.01 Octacosane 0.02 0.00 Dotriacontane 0.04 0.00 Tetracontane 0.06 0.01 AMINES 0.02 0.02 Methylamine 0.34 0.02 ethyl amine 0.26 0.03 Ethanol amine 0.11 0.01 Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.02	Hexadecane	0.22	0.03
Nonadecane 0.06 0.03 Eicosane 0.08 0.00 Heneicosane 0.03 0.00 Docosane 0.02 0.01 Octacosane 0.02 0.00 Dotriacontane 0.04 0.00 Tetracontane 0.06 0.01 AMINES Diethanolamine 0.15 0.02 Methylamine 0.34 0.02 ethyl amine 0.26 0.03 Ethanol amine 0.11 0.01 Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.02	Heptadecane	0.08_	0.01
Eicosane 0.08 0.00 Heneicosane 0.03 0.00 Docosane 0.02 0.01 Octacosane 0.02 0.00 Dotriacontane 0.04 0.00 Tetracontane 0.06 0.01 AMINES Diethanolamine 0.15 0.02 Methylamine 0.34 0.02 ethyl amine 0.26 0.03 Ethanol amine 0.11 0.01 Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.02	Octadecane	0.05	0.01
Heneicosane 0.03 0.00 Docosane 0.02 0.01 Octacosane 0.02 0.00 Dotriacontane 0.04 0.00 Tetracontane 0.06 0.01 AMINES Diethanolamine 0.15 0.02 Methylamine 0.34 0.02 ethyl amine 0.26 0.03 Ethanol amine 0.11 0.01 Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.02	Nonadecane	0.06	0.03
Docosane 0.02 0.01 Octacosane 0.02 0.00 Dotriacontane 0.04 0.00 Tetracontane 0.06 0.01 AMINES Diethanolamine 0.15 0.02 Methylamine 0.34 0.02 ethyl amine 0.26 0.03 Ethanol amine 0.11 0.01 Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.02	Eicosane	0.08	0.00
Octacosane 0.02 0.00 Dotriacontane 0.04 0.00 Tetracontane 0.06 0.01 AMINES 	Heneicosane	0.03	0.00
Dotriacontane 0.04 0.00 Tetracontane 0.06 0.01 AMINES	Docosane	0.02	0.01
Tetracontane 0.06 0.01 AMINES 0.15 0.02 Methylamine 0.34 0.02 ethyl amine 0.26 0.03 Ethanol amine 0.11 0.01 Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.02	Octacosane	0.02	0.00
AMINES Diethanolamine 0.15 0.02 Methylamine 0.34 0.02 ethyl amine 0.26 0.03 Ethanol amine 0.11 0.01 Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.02	Dotriacontane	0.04	0.00
Diethanolamine 0.15 0.02 Methylamine 0.34 0.02 ethyl amine 0.26 0.03 Ethanol amine 0.11 0.01 Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.02	Tetracontane	0.06	0.01
Methylamine 0.34 0.02 ethyl amine 0.26 0.03 Ethanol amine 0.11 0.01 Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.02	AMINES		
ethyl amine 0.26 0.03 Ethanol amine 0.11 0.01 Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.02	Diethanolamine .	0.15	0.02
Ethanol amine 0.11 0.01 Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.02	Methylamine	0.34	0.02
Triazene 0.00 0.00 Methyl diethanol amine 0.19 0.02	ethyl amine	0.26	0.03
Methyl diethanol amine 0.19 0.02	Ethanol amine	0.11	0.01
The state of the s	Triazene	0.00	0.00
Ethylenediamine 0.28 0.06	Methyl diethanol amine	0.19	0.02
	Ethylenediamine	0.28	0.06
	·		

Table 2. QA/QC: Results of Check Samples

QA/QC DAta					
Pacific EcoRisk Samples					
Units	mg/L	mg/L	mg/L	Check Sample	
	Methanol Blank	1.0 mg/L check sample	0.1 mg/L Check sample		
1,2,4-trimethylbenzene	< 0.01	1.06	_	1	
1-ethyl-2-methyl benzene	< 0.01	1.09	-	1	
1,3-diethyl benzene	< 0.01	1.07	-	1	
1-methyl-3-propyl benzene	< 0.01	1.03	_	1	
1-methyl-3-(1-methylethyl)-benzene	< 0.01	0.99	-	1	
1,2-diethyl benzene	< 0.01	1.03	-	1	
benzene	< 0.01	1.08	-	1	
toluene	< 0.01	1.09	_	1	
p-xylene	< 0.01	1.11	-	1	
ethylbenzene	< 0.01	1.05	-	1	
1-methyl-2-propyl benzene	< 0.01	1.09	-	1	
Phenol	0.012	1.13	-	1	
2-methyl phenol	< 0.01	1.05		1	
3-methyl phenol	< 0.01	1.04	-	1	
1,2-dimethylbenzene	< 0.001	-	0.099	2	
1,3-dimethylbenzene	< 0.001	-	0.109	2	
3,4-dimethyl phenol	< 0.01	1.07	_	1	
3-ethyl phenol	< 0.01	1.12	-	1	
Analine	< 0.01	1.08	-	1	
1,3,5-trimethyl benzene	< 0.01	-	0.108	2	
1-methyl-naphthalene	< 0.001	-	0.099	2	
2-methyl-naphthalene	< 0.001	-	0.105	2	
1,5-dimethyl-naphthalene	< 0.001	-	0.107	2	
1,7-dimethyl-naphthalene	< 0.001	-	0.101	2	
Naphthalene	< 0.001	_	0.095	2	
NAPHTHENIC ACIDS			_		
Cyclohexanecarboxylic acid	< 0.005	1.09	0.107	3,4	
Methyl-pentyl cyclohexanecarboxylic	< 0.005	 		3,4	
acid		0.98	0.101	<u> </u>	
Methyl, pentylcyclopentanecarboxylic	< 0.005		_	3,4	
acid		1.06	0.104	ļ <u>.</u>	
Heptylcyclohexanecarboxylic acid	< 0.005	0.94	0.096	3,4	
Cyclopentanecarboxylic acid	< 0.005	1.04	0.110	3,4	
Diethylcyclopentanecarboxylic acid	0.006	1.07	0.108	3,4	
			1		

				•	
3-methy-1-pentene	< 0.01	1.00	-		
Decane	< 0.01	0.96	-		
2,7-dimethyl octane	< 0.01	0.96	-	5	
4-methyl-nonane	< 0.01	1.04	-	5	
2,6-dimethyloctane	< 0.01	0.97		5	
3-ethyl-2methyl-heptane	< 0.01	0.93	-	5	
undecane	< 0.01	0.98	-	5	
dodecane	< 0.01	1.03	-	5	
tridecane	< 0.01	0.95	-	5	
tetradecane	< 0.01	0.93		5 -	
Pentadecane	< 0.01	1.02	-	5	
hexadecane	< 0.01	0.93	-	5	
heptadecane	< 0.01	0.97	-	5	
octadecane	< 0.01	1.03	-	5	
nonadecane	< 0.01	1.05	-	5	
eicosane	< 0.01	1.02	-	· 5	
heneicosane	< 0.01	1.04	-	5	
docosane	< 0.01	0.97	-	5	
octacosane	< 0.01	1.01	_	5	
dotriacontane	< 0.01	1.02	-	5	
tetracontane	< 0.01	0.95	_	5	
diethanolamine	< 0.01	1.09		6	
methylamine	< 0.01	1.11	-	6	-
ethyl amine	< 0.01	1.08	-	6	
Ethanol amine	< 0.01	1.10	-	6	
Triazene	< 0.01	1.03		6	
Methyl diethanol amine	< 0.01	1.07	-	6	
Ethylenediamine	< 0.01	1.09	-	6	
			<u> </u>		

Check Samples

- 1. 1 ppm mixture of refinery aromatics in 99% methanol.
- 2. 0.1 ppm mixture of refinery aromatics in 99% methanol
- 3. 1.0 ppm Naphthenic acid mixture in 99% methanol
- 4. 0.1 ppm Naphthenic acid mixture in 99% methanol
- 5. 1.0 ppm Alkanes in 99% methanol
- 6. 1.0 ppm Refinery Amines in 99% methanol